import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
properties_data = {
'Property': [
'Mediterranean Avenue', 'Baltic Avenue', 'Oriental Avenue', 'Vermont Avenue',
'Connecticut Avenue', 'St. Charles Place', 'States Avenue', 'Virginia Avenue',
'St. James Place', 'Tennessee Avenue', 'New York Avenue', 'Kentucky Avenue',
'Indiana Avenue', 'Illinois Avenue', 'Atlantic Avenue', 'Ventnor Avenue',
'Marvin Gardens', 'Pacific Avenue', 'North Carolina Avenue', 'Pennsylvania Avenue',
'Park Place', 'Boardwalk', 'Reading Railroad', 'Pennsylvania Railroad',
'B. & O. Railroad', 'Short Line', 'Electric Company', 'Water Works'
],
'Property Color': [
'Brown', 'Brown', 'Light Blue', 'Light Blue', 'Light Blue', 'Pink', 'Pink', 'Pink',
'Orange', 'Orange', 'Orange', 'Red', 'Red', 'Red', 'Yellow', 'Yellow', 'Yellow',
'Green', 'Green', 'Green', 'Dark Blue', 'Dark Blue', 'Railroad', 'Railroad',
'Railroad', 'Railroad', 'Utility', 'Utility'
],
'Purchase Price': [
60, 60, 100, 100, 120, 140, 140, 160, 180, 180, 200, 220, 220, 240, 260, 260,
280, 300, 300, 320, 350, 400, 200, 200, 200, 200, 150, 150
]
}
properties = pd.DataFrame(properties_data)
income_data = {
'Player': [
'Neil', 'Amanda', 'Annie', 'Annie', 'Annie', 'Shawn', np.nan, 'Shawn', 'Neil', 'Neil',
'Neil', np.nan, np.nan, 'Amanda', 'Amanda', 'Amanda', 'Neil', 'Shawn', 'Shawn',
'Shawn', 'Amanda', 'Shawn', 'Annie', np.nan, 'Annie', 'Annie', 'Neil', 'Neil'
],
'Property': [
'Mediterranean Avenue', 'Baltic Avenue', 'Oriental Avenue', 'Vermont Avenue',
'Connecticut Avenue', 'St. Charles Place', 'States Avenue', 'Virginia Avenue',
'St. James Place', 'Tennessee Avenue', 'New York Avenue', 'Kentucky Avenue',
'Indiana Avenue', 'Illinois Avenue', 'Atlantic Avenue', 'Ventnor Avenue',
'Marvin Gardens', 'Pacific Avenue', 'North Carolina Avenue', 'Pennsylvania Avenue',
'Park Place', 'Boardwalk', 'Reading Railroad', 'Pennsylvania Railroad',
'B. & O. Railroad', 'Short Line', 'Electric Company', 'Water Works'
],
'Income Generated': [
'$40', '$60', '$50', '$50', '$60', '$100', np.nan, '$120', '$140', '$140', '$160', np.nan, np.nan, '$180', '$200',
'$200', '$200', '$250', '$250', '$150', '$375', '$425', '$100', np.nan, '$100', '$100', '$75', '$75'
]
}
income = pd.DataFrame(income_data)